Title: | Bayesian Model Selection Approach for Parsimonious Gaussian Mixture Models |
---|---|
Description: | Model-based clustering using Bayesian parsimonious Gaussian mixture models. MCMC (Markov chain Monte Carlo) are used for parameter estimation. The RJMCMC (Reversible-jump Markov chain Monte Carlo) is used for model selection. GREEN et al. (1995) <doi:10.1093/biomet/82.4.711>. |
Authors: | Xiang Lu <Xiang_Lu at urmc.rochester.edu>, Yaoxiang Li <yl814 at georgetown.edu>, Tanzy Love <tanzy_love at urmc.rochester.edu> |
Maintainer: | Yaoxiang Li <[email protected]> |
License: | GPL-3 |
Version: | 1.0.9 |
Built: | 2024-11-12 03:56:09 UTC |
Source: | https://github.com/cran/bpgmm |
CalculateProposalLambda
CalculateProposalLambda(hparam, thetaYList, CxyList, constraint, m, p, qVec)
CalculateProposalLambda(hparam, thetaYList, CxyList, constraint, m, p, qVec)
hparam |
hparam |
thetaYList |
thetaYList |
CxyList |
CxyList |
constraint |
constraint |
m |
the number of clusters |
p |
the number of features |
qVec |
the vector of the number of factors in each clusters |
set.seed(100) n <- 10 p <- 2 q <- 1 K <- 2 X <- t( fabMix::simData( sameLambda = TRUE, sameSigma = TRUE, K.true = K, n = n, q = q, p = p, sINV_values = 1 / ((1:p)) )$data ) m <- 1 muBar <- c(0, 0) hparam <- new( "Hparam", alpha1 = 0.567755037123148, alpha2 = 1.1870201935945, delta = 2, ggamma = 2, bbeta = 3.39466184520673 ) qVec <- c(1, 1) constraint <- c(0, 0, 0) ZOneDim <- sample(seq_len(m), n, replace = TRUE) thetaYList <- new( "ThetaYList", tao = 0.366618687752634, psy = list(structure( c( 4.18375613018654, 0, 0, 5.46215996830771 ), .Dim = c(2L, 2L) )), M = list(structure( c( 3.27412045866392, -2.40544145363349 ), .Dim = 1:2 )), lambda = list(structure( c( 2.51015961514781, -0.0741189919182549 ), .Dim = 2:1 )), Y = list(structure( c( -0.244239011725104, -0.26876172736886, 0.193431511203083, 0.41624466812811, -0.54581548068437, -0.0479517628308146, -0.633383997203325, 0.856855296613208, 0.792850576988512, 0.268208848994559 ), .Dim = c(1L, 10L) )) ) CxyList <- list( A = list(structure( c(0.567755037123148, 0, 0, 1.1870201935945), .Dim = c(2L, 2L) )), nVec = structure(10, .Dim = c(1L, 1L)), Cxxk = list(structure( c( 739.129405647622, 671.040583460732, 671.040583460732, 618.754338945564 ), .Dim = c(2L, 2L) )), Cxyk = list(structure( c(-18.5170828875512, -16.5748393456787), .Dim = 2:1 )), Cyyk = list(structure(2.4786991560888, .Dim = c( 1L, 1L ))), Cytytk = list(structure( c( 10, 0.787438922114998, 0.787438922114998, 2.4786991560888 ), .Dim = c(2L, 2L) )), Cxtytk = list(structure( c( -57.5402230447872, -54.6677145995824, -18.5170828875512, -16.5748393456787 ), .Dim = c( 2L, 2L ) )), CxL1k = list(structure( c(-59.5168204264758, -54.6093504204781), .Dim = 2:1 )), Cxmyk = list(structure( c( -21.0952527723962, -14.6807011202188 ), .Dim = 2:1 )), sumCxmyk = structure(c( -21.0952527723962, -14.6807011202188 ), .Dim = 2:1), sumCyyk = structure(3.6657193496833, .Dim = c( 1L, 1L )) ) CalculateProposalLambda(hparam, thetaYList, CxyList, constraint, m, p, qVec)
set.seed(100) n <- 10 p <- 2 q <- 1 K <- 2 X <- t( fabMix::simData( sameLambda = TRUE, sameSigma = TRUE, K.true = K, n = n, q = q, p = p, sINV_values = 1 / ((1:p)) )$data ) m <- 1 muBar <- c(0, 0) hparam <- new( "Hparam", alpha1 = 0.567755037123148, alpha2 = 1.1870201935945, delta = 2, ggamma = 2, bbeta = 3.39466184520673 ) qVec <- c(1, 1) constraint <- c(0, 0, 0) ZOneDim <- sample(seq_len(m), n, replace = TRUE) thetaYList <- new( "ThetaYList", tao = 0.366618687752634, psy = list(structure( c( 4.18375613018654, 0, 0, 5.46215996830771 ), .Dim = c(2L, 2L) )), M = list(structure( c( 3.27412045866392, -2.40544145363349 ), .Dim = 1:2 )), lambda = list(structure( c( 2.51015961514781, -0.0741189919182549 ), .Dim = 2:1 )), Y = list(structure( c( -0.244239011725104, -0.26876172736886, 0.193431511203083, 0.41624466812811, -0.54581548068437, -0.0479517628308146, -0.633383997203325, 0.856855296613208, 0.792850576988512, 0.268208848994559 ), .Dim = c(1L, 10L) )) ) CxyList <- list( A = list(structure( c(0.567755037123148, 0, 0, 1.1870201935945), .Dim = c(2L, 2L) )), nVec = structure(10, .Dim = c(1L, 1L)), Cxxk = list(structure( c( 739.129405647622, 671.040583460732, 671.040583460732, 618.754338945564 ), .Dim = c(2L, 2L) )), Cxyk = list(structure( c(-18.5170828875512, -16.5748393456787), .Dim = 2:1 )), Cyyk = list(structure(2.4786991560888, .Dim = c( 1L, 1L ))), Cytytk = list(structure( c( 10, 0.787438922114998, 0.787438922114998, 2.4786991560888 ), .Dim = c(2L, 2L) )), Cxtytk = list(structure( c( -57.5402230447872, -54.6677145995824, -18.5170828875512, -16.5748393456787 ), .Dim = c( 2L, 2L ) )), CxL1k = list(structure( c(-59.5168204264758, -54.6093504204781), .Dim = 2:1 )), Cxmyk = list(structure( c( -21.0952527723962, -14.6807011202188 ), .Dim = 2:1 )), sumCxmyk = structure(c( -21.0952527723962, -14.6807011202188 ), .Dim = 2:1), sumCyyk = structure(3.6657193496833, .Dim = c( 1L, 1L )) ) CalculateProposalLambda(hparam, thetaYList, CxyList, constraint, m, p, qVec)
CalculateProposalPsy
CalculateProposalPsy(hparam, thetaYList, CxyList, constraint, m, p, qVec)
CalculateProposalPsy(hparam, thetaYList, CxyList, constraint, m, p, qVec)
hparam |
hparam |
thetaYList |
thetaYList |
CxyList |
CxyList |
constraint |
constraint |
m |
the number of clusters |
p |
the number of features |
qVec |
the vector of the number of factors in each clusters |
set.seed(100) n <- 10 p <- 2 q <- 1 K <- 2 m <- 1 muBar <- c(0, 0) qVec <- c(1, 1) constraint <- c(0, 0, 0) X <- t( fabMix::simData( sameLambda = TRUE, sameSigma = TRUE, K.true = K, n = n, q = q, p = p, sINV_values = 1 / ((1:p)) )$data ) hparam <- new( "Hparam", alpha1 = 0.567755037123148, alpha2 = 1.1870201935945, delta = 2, ggamma = 2, bbeta = 3.39466184520673 ) ZOneDim <- sample(seq_len(m), n, replace = TRUE) thetaYList <- new( "ThetaYList", tao = 0.366618687752634, psy = list(structure( c( 4.18375613018654, 0, 0, 5.46215996830771 ), .Dim = c(2L, 2L) )), M = list(structure( c( 3.27412045866392, -2.40544145363349 ), .Dim = 1:2 )), lambda = list(structure( c( 2.51015961514781, -0.0741189919182549 ), .Dim = 2:1 )), Y = list(structure( c( -0.244239011725104, -0.26876172736886, 0.193431511203083, 0.41624466812811, -0.54581548068437, -0.0479517628308146, -0.633383997203325, 0.856855296613208, 0.792850576988512, 0.268208848994559 ), .Dim = c(1L, 10L) )) ) constraint <- c(0, 0, 0) CxyList <- list( A = list(structure( c(0.567755037123148, 0, 0, 1.1870201935945), .Dim = c(2L, 2L) )), nVec = structure(10, .Dim = c(1L, 1L)), Cxxk = list(structure( c( 739.129405647622, 671.040583460732, 671.040583460732, 618.754338945564 ), .Dim = c(2L, 2L) )), Cxyk = list(structure( c(-18.5170828875512, -16.5748393456787), .Dim = 2:1 )), Cyyk = list(structure(2.4786991560888, .Dim = c( 1L, 1L ))), Cytytk = list(structure( c( 10, 0.787438922114998, 0.787438922114998, 2.4786991560888 ), .Dim = c(2L, 2L) )), Cxtytk = list(structure( c( -57.5402230447872, -54.6677145995824, -18.5170828875512, -16.5748393456787 ), .Dim = c( 2L, 2L ) )), CxL1k = list(structure( c(-59.5168204264758, -54.6093504204781), .Dim = 2:1 )), Cxmyk = list(structure( c( -21.0952527723962, -14.6807011202188 ), .Dim = 2:1 )), sumCxmyk = structure(c( -21.0952527723962, -14.6807011202188 ), .Dim = 2:1), sumCyyk = structure(3.6657193496833, .Dim = c( 1L, 1L )) ) #' CalculateProposalPsy(hparam, thetaYList, CxyList, constraint, m, p, qVec)
set.seed(100) n <- 10 p <- 2 q <- 1 K <- 2 m <- 1 muBar <- c(0, 0) qVec <- c(1, 1) constraint <- c(0, 0, 0) X <- t( fabMix::simData( sameLambda = TRUE, sameSigma = TRUE, K.true = K, n = n, q = q, p = p, sINV_values = 1 / ((1:p)) )$data ) hparam <- new( "Hparam", alpha1 = 0.567755037123148, alpha2 = 1.1870201935945, delta = 2, ggamma = 2, bbeta = 3.39466184520673 ) ZOneDim <- sample(seq_len(m), n, replace = TRUE) thetaYList <- new( "ThetaYList", tao = 0.366618687752634, psy = list(structure( c( 4.18375613018654, 0, 0, 5.46215996830771 ), .Dim = c(2L, 2L) )), M = list(structure( c( 3.27412045866392, -2.40544145363349 ), .Dim = 1:2 )), lambda = list(structure( c( 2.51015961514781, -0.0741189919182549 ), .Dim = 2:1 )), Y = list(structure( c( -0.244239011725104, -0.26876172736886, 0.193431511203083, 0.41624466812811, -0.54581548068437, -0.0479517628308146, -0.633383997203325, 0.856855296613208, 0.792850576988512, 0.268208848994559 ), .Dim = c(1L, 10L) )) ) constraint <- c(0, 0, 0) CxyList <- list( A = list(structure( c(0.567755037123148, 0, 0, 1.1870201935945), .Dim = c(2L, 2L) )), nVec = structure(10, .Dim = c(1L, 1L)), Cxxk = list(structure( c( 739.129405647622, 671.040583460732, 671.040583460732, 618.754338945564 ), .Dim = c(2L, 2L) )), Cxyk = list(structure( c(-18.5170828875512, -16.5748393456787), .Dim = 2:1 )), Cyyk = list(structure(2.4786991560888, .Dim = c( 1L, 1L ))), Cytytk = list(structure( c( 10, 0.787438922114998, 0.787438922114998, 2.4786991560888 ), .Dim = c(2L, 2L) )), Cxtytk = list(structure( c( -57.5402230447872, -54.6677145995824, -18.5170828875512, -16.5748393456787 ), .Dim = c( 2L, 2L ) )), CxL1k = list(structure( c(-59.5168204264758, -54.6093504204781), .Dim = 2:1 )), Cxmyk = list(structure( c( -21.0952527723962, -14.6807011202188 ), .Dim = 2:1 )), sumCxmyk = structure(c( -21.0952527723962, -14.6807011202188 ), .Dim = 2:1), sumCyyk = structure(3.6657193496833, .Dim = c( 1L, 1L )) ) #' CalculateProposalPsy(hparam, thetaYList, CxyList, constraint, m, p, qVec)
Log scale ratio calculation
calculateRatio(deno, nume)
calculateRatio(deno, nume)
deno |
denominator. |
nume |
numerator. |
result of ratio
deno <- log(1) nume <- log(2) #' calculateRatio(deno, nume)
deno <- log(1) nume <- log(2) #' calculateRatio(deno, nume)
calculateVarList
calculateVarList(psyList, lambdaList)
calculateVarList(psyList, lambdaList)
psyList |
psyList |
lambdaList |
lambdaList |
set.seed(100) n <- 10 p <- 2 q <- 1 K <- 2 m <- 1 muBar <- c(0, 0) qVec <- c(1, 1) constraint <- c(0, 0, 0) X <- t( fabMix::simData( sameLambda = TRUE, sameSigma = TRUE, K.true = K, n = n, q = q, p = p, sINV_values = 1 / ((1:p)) )$data ) hparam <- new( "Hparam", alpha1 = 0.567755037123148, alpha2 = 1.1870201935945, delta = 2, ggamma = 2, bbeta = 3.39466184520673 ) ZOneDim <- sample(seq_len(m), n, replace = TRUE) thetaYList <- new( "ThetaYList", tao = 0.366618687752634, psy = list(structure( c( 4.18375613018654, 0, 0, 5.46215996830771 ), .Dim = c(2L, 2L) )), M = list(structure( c( 3.27412045866392, -2.40544145363349 ), .Dim = 1:2 )), lambda = list(structure( c( 2.51015961514781, -0.0741189919182549 ), .Dim = 2:1 )), Y = list(structure( c( -0.244239011725104, -0.26876172736886, 0.193431511203083, 0.41624466812811, -0.54581548068437, -0.0479517628308146, -0.633383997203325, 0.856855296613208, 0.792850576988512, 0.268208848994559 ), .Dim = c(1L, 10L) )) ) #' calculateVarList(thetaYList@psy, thetaYList@lambda)
set.seed(100) n <- 10 p <- 2 q <- 1 K <- 2 m <- 1 muBar <- c(0, 0) qVec <- c(1, 1) constraint <- c(0, 0, 0) X <- t( fabMix::simData( sameLambda = TRUE, sameSigma = TRUE, K.true = K, n = n, q = q, p = p, sINV_values = 1 / ((1:p)) )$data ) hparam <- new( "Hparam", alpha1 = 0.567755037123148, alpha2 = 1.1870201935945, delta = 2, ggamma = 2, bbeta = 3.39466184520673 ) ZOneDim <- sample(seq_len(m), n, replace = TRUE) thetaYList <- new( "ThetaYList", tao = 0.366618687752634, psy = list(structure( c( 4.18375613018654, 0, 0, 5.46215996830771 ), .Dim = c(2L, 2L) )), M = list(structure( c( 3.27412045866392, -2.40544145363349 ), .Dim = 1:2 )), lambda = list(structure( c( 2.51015961514781, -0.0741189919182549 ), .Dim = 2:1 )), Y = list(structure( c( -0.244239011725104, -0.26876172736886, 0.193431511203083, 0.41624466812811, -0.54581548068437, -0.0479517628308146, -0.633383997203325, 0.856855296613208, 0.792850576988512, 0.268208848994559 ), .Dim = c(1L, 10L) )) ) #' calculateVarList(thetaYList@psy, thetaYList@lambda)
changeConstraintFormat
changeConstraintFormat(strNum)
changeConstraintFormat(strNum)
strNum |
strNum |
#' changeConstraintFormat(c(0, 0, 0))
#' changeConstraintFormat(c(0, 0, 0))
clearCurrentThetaYlist
clearCurrentThetaYlist(thetaYList, clusInd, mMax)
clearCurrentThetaYlist(thetaYList, clusInd, mMax)
thetaYList |
thetaYList |
clusInd |
clusInd |
mMax |
mMax |
set.seed(100) n <- 10 p <- 2 q <- 1 K <- 2 m <- 1 muBar <- c(0, 0) qVec <- c(1, 1) constraint <- c(0, 0, 0) X <- t( fabMix::simData( sameLambda = TRUE, sameSigma = TRUE, K.true = K, n = n, q = q, p = p, sINV_values = 1 / ((1:p)) )$data ) hparam <- new( "Hparam", alpha1 = 0.567755037123148, alpha2 = 1.1870201935945, delta = 2, ggamma = 2, bbeta = 3.39466184520673 ) ZOneDim <- sample(seq_len(m), n, replace = TRUE) thetaYList <- new( "ThetaYList", tao = 0.366618687752634, psy = list(structure( c( 4.18375613018654, 0, 0, 5.46215996830771 ), .Dim = c(2L, 2L) )), M = list(structure( c( 3.27412045866392, -2.40544145363349 ), .Dim = 1:2 )), lambda = list(structure( c( 2.51015961514781, -0.0741189919182549 ), .Dim = 2:1 )), Y = list(structure( c( -0.244239011725104, -0.26876172736886, 0.193431511203083, 0.41624466812811, -0.54581548068437, -0.0479517628308146, -0.633383997203325, 0.856855296613208, 0.792850576988512, 0.268208848994559 ), .Dim = c(1L, 10L) )) ) clusInd <- rep(1, m) mMax <- 1 #' clearCurrentThetaYlist(thetaYList, clusInd, mMax)
set.seed(100) n <- 10 p <- 2 q <- 1 K <- 2 m <- 1 muBar <- c(0, 0) qVec <- c(1, 1) constraint <- c(0, 0, 0) X <- t( fabMix::simData( sameLambda = TRUE, sameSigma = TRUE, K.true = K, n = n, q = q, p = p, sINV_values = 1 / ((1:p)) )$data ) hparam <- new( "Hparam", alpha1 = 0.567755037123148, alpha2 = 1.1870201935945, delta = 2, ggamma = 2, bbeta = 3.39466184520673 ) ZOneDim <- sample(seq_len(m), n, replace = TRUE) thetaYList <- new( "ThetaYList", tao = 0.366618687752634, psy = list(structure( c( 4.18375613018654, 0, 0, 5.46215996830771 ), .Dim = c(2L, 2L) )), M = list(structure( c( 3.27412045866392, -2.40544145363349 ), .Dim = 1:2 )), lambda = list(structure( c( 2.51015961514781, -0.0741189919182549 ), .Dim = 2:1 )), Y = list(structure( c( -0.244239011725104, -0.26876172736886, 0.193431511203083, 0.41624466812811, -0.54581548068437, -0.0479517628308146, -0.633383997203325, 0.856855296613208, 0.792850576988512, 0.268208848994559 ), .Dim = c(1L, 10L) )) ) clusInd <- rep(1, m) mMax <- 1 #' clearCurrentThetaYlist(thetaYList, clusInd, mMax)
combineClusterPara
combineClusterPara(oldList, newList, ind)
combineClusterPara(oldList, newList, ind)
oldList |
oldList |
newList |
newList |
ind |
ind |
set.seed(100) n <- 10 p <- 2 q <- 1 K <- 2 m <- 1 muBar <- c(0, 0) qVec <- c(1, 1) constraint <- c(0, 0, 0) X <- t( fabMix::simData( sameLambda = TRUE, sameSigma = TRUE, K.true = K, n = n, q = q, p = p, sINV_values = 1 / ((1:p)) )$data ) hparam <- new( "Hparam", alpha1 = 0.567755037123148, alpha2 = 1.1870201935945, delta = 2, ggamma = 2, bbeta = 3.39466184520673 ) ZOneDim <- sample(seq_len(m), n, replace = TRUE) newList <- oldList <- new( "ThetaYList", tao = 0.366618687752634, psy = list(structure( c( 4.18375613018654, 0, 0, 5.46215996830771 ), .Dim = c(2L, 2L) )), M = list(structure( c( 3.27412045866392, -2.40544145363349 ), .Dim = 1:2 )), lambda = list(structure( c( 2.51015961514781, -0.0741189919182549 ), .Dim = 2:1 )), Y = list(structure( c( -0.244239011725104, -0.26876172736886, 0.193431511203083, 0.41624466812811, -0.54581548068437, -0.0479517628308146, -0.633383997203325, 0.856855296613208, 0.792850576988512, 0.268208848994559 ), .Dim = c(1L, 10L) )) ) #' combineClusterPara(oldList, newList, 1)
set.seed(100) n <- 10 p <- 2 q <- 1 K <- 2 m <- 1 muBar <- c(0, 0) qVec <- c(1, 1) constraint <- c(0, 0, 0) X <- t( fabMix::simData( sameLambda = TRUE, sameSigma = TRUE, K.true = K, n = n, q = q, p = p, sINV_values = 1 / ((1:p)) )$data ) hparam <- new( "Hparam", alpha1 = 0.567755037123148, alpha2 = 1.1870201935945, delta = 2, ggamma = 2, bbeta = 3.39466184520673 ) ZOneDim <- sample(seq_len(m), n, replace = TRUE) newList <- oldList <- new( "ThetaYList", tao = 0.366618687752634, psy = list(structure( c( 4.18375613018654, 0, 0, 5.46215996830771 ), .Dim = c(2L, 2L) )), M = list(structure( c( 3.27412045866392, -2.40544145363349 ), .Dim = 1:2 )), lambda = list(structure( c( 2.51015961514781, -0.0741189919182549 ), .Dim = 2:1 )), Y = list(structure( c( -0.244239011725104, -0.26876172736886, 0.193431511203083, 0.41624466812811, -0.54581548068437, -0.0479517628308146, -0.633383997203325, 0.856855296613208, 0.792850576988512, 0.268208848994559 ), .Dim = c(1L, 10L) )) ) #' combineClusterPara(oldList, newList, 1)
evaluate prior value for parameter Theta and Y.
evaluatePrior(m, p, muBar, hparam, thetaYList, ZOneDim, qVec, constraint, clusInd)
evaluatePrior(m, p, muBar, hparam, thetaYList, ZOneDim, qVec, constraint, clusInd)
m |
m |
p |
p |
muBar |
mu_bar |
hparam |
hyper parameter class |
thetaYList |
theta Y list |
ZOneDim |
one dim of z |
qVec |
q vector |
constraint |
type of constraint |
clusInd |
cluster indicator vector |
m <- 20 n <- 500 p <- 10 muBar <- c( -33.1342706763595, -35.2699639183419, 48.276928009445, 16.2370659601218, 19.0023163870536, -23.4900965314972, 37.1081269873873, 4.74944562930846, 4.6918997353449, -4.55088073255655 ) hparam <- new("Hparam", alpha1 = 0.567755037123148, alpha2 = 1.1870201935945, delta = 2, ggamma = 2, bbeta = 3.39466184520673 ) qVec <- c(4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4) ZOneDim <- sample(seq_len(m), n, replace = TRUE) constraint <- c(0, 0, 0) thetaYList <- generatePriorThetaY(m, n, p, muBar, hparam, qVec, ZOneDim, constraint) clusInd <- rep(1, m) #' evaluatePrior( m, p, muBar, hparam, thetaYList, ZOneDim, qVec, constraint, clusInd )
m <- 20 n <- 500 p <- 10 muBar <- c( -33.1342706763595, -35.2699639183419, 48.276928009445, 16.2370659601218, 19.0023163870536, -23.4900965314972, 37.1081269873873, 4.74944562930846, 4.6918997353449, -4.55088073255655 ) hparam <- new("Hparam", alpha1 = 0.567755037123148, alpha2 = 1.1870201935945, delta = 2, ggamma = 2, bbeta = 3.39466184520673 ) qVec <- c(4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4) ZOneDim <- sample(seq_len(m), n, replace = TRUE) constraint <- c(0, 0, 0) thetaYList <- generatePriorThetaY(m, n, p, muBar, hparam, qVec, ZOneDim, constraint) clusInd <- rep(1, m) #' evaluatePrior( m, p, muBar, hparam, thetaYList, ZOneDim, qVec, constraint, clusInd )
evaluate prior value for parameter Lambda
evaluatePriorLambda(p, m, alpha2, qVec, psy, lambda, constraint, clusInd)
evaluatePriorLambda(p, m, alpha2, qVec, psy, lambda, constraint, clusInd)
p |
the number of features |
m |
the number of clusters |
alpha2 |
hyper parameter |
qVec |
the vector of the number of factors in each clusters |
psy |
parameter |
lambda |
parameter |
constraint |
the pgmm constraint, a vector of length three with binary entry. For example, c(1,1,1) means the fully constraint model |
clusInd |
cluster indicator vector |
p <- 10 m <- 20 alpha2 <- 1.18 qVec <- rep(4, m) delta <- 2 bbeta <- 2 constraint <- c(0, 0, 0) psy <- generatePriorPsi( p, m, delta, bbeta, constraint ) lambda <- generatePriorLambda( p, m, alpha2, qVec, psy, constraint ) clusInd <- rep(1, m) #' evaluatePriorLambda( p, m, alpha2, qVec, psy, lambda, constraint, clusInd )
p <- 10 m <- 20 alpha2 <- 1.18 qVec <- rep(4, m) delta <- 2 bbeta <- 2 constraint <- c(0, 0, 0) psy <- generatePriorPsi( p, m, delta, bbeta, constraint ) lambda <- generatePriorLambda( p, m, alpha2, qVec, psy, constraint ) clusInd <- rep(1, m) #' evaluatePriorLambda( p, m, alpha2, qVec, psy, lambda, constraint, clusInd )
evaluate prior value for parameter Psi
evaluatePriorPsi(psy, p, m, delta, bbeta, constraint, clusInd)
evaluatePriorPsi(psy, p, m, delta, bbeta, constraint, clusInd)
psy |
parameter |
p |
the number of features |
m |
the number of clusters |
delta |
parameter |
bbeta |
parameter |
constraint |
parameter |
clusInd |
cluster indicator vector |
p <- 10 m <- 20 delta <- 2 bbeta <- 2 constraint <- c(0, 0, 0) psy <- generatePriorPsi( p, m, delta, bbeta, constraint ) clusInd <- rep(1, m) #' evaluatePriorPsi( psy, p, m, delta, bbeta, constraint, clusInd )
p <- 10 m <- 20 delta <- 2 bbeta <- 2 constraint <- c(0, 0, 0) psy <- generatePriorPsi( p, m, delta, bbeta, constraint ) clusInd <- rep(1, m) #' evaluatePriorPsi( psy, p, m, delta, bbeta, constraint, clusInd )
EvaluateProposalLambda
EvaluateProposalLambda(hparam, thetaYList, CxyList, constraint, newlambda, m, qVec, p)
EvaluateProposalLambda(hparam, thetaYList, CxyList, constraint, newlambda, m, qVec, p)
hparam |
hparam |
thetaYList |
thetaYList |
CxyList |
CxyList |
constraint |
constraint |
newlambda |
newlambda |
m |
the number of clusters |
qVec |
the vector of the number of factors in each clusters |
p |
the number of features |
set.seed(100) n <- 10 p <- 2 q <- 1 K <- 2 m <- 1 muBar <- c(0, 0) qVec <- c(1, 1) constraint <- c(0, 0, 0) X <- t( fabMix::simData( sameLambda = TRUE, sameSigma = TRUE, K.true = K, n = n, q = q, p = p, sINV_values = 1 / ((1:p)) )$data ) hparam <- new( "Hparam", alpha1 = 0.567755037123148, alpha2 = 1.1870201935945, delta = 2, ggamma = 2, bbeta = 3.39466184520673 ) ZOneDim <- sample(seq_len(m), n, replace = TRUE) thetaYList <- new( "ThetaYList", tao = 0.366618687752634, psy = list(structure( c( 4.18375613018654, 0, 0, 5.46215996830771 ), .Dim = c(2L, 2L) )), M = list(structure( c( 3.27412045866392, -2.40544145363349 ), .Dim = 1:2 )), lambda = list(structure( c( 2.51015961514781, -0.0741189919182549 ), .Dim = 2:1 )), Y = list(structure( c( -0.244239011725104, -0.26876172736886, 0.193431511203083, 0.41624466812811, -0.54581548068437, -0.0479517628308146, -0.633383997203325, 0.856855296613208, 0.792850576988512, 0.268208848994559 ), .Dim = c(1L, 10L) )) ) CxyList <- list( A = list(structure( c(0.567755037123148, 0, 0, 1.1870201935945), .Dim = c(2L, 2L) )), nVec = structure(10, .Dim = c(1L, 1L)), Cxxk = list(structure( c( 739.129405647622, 671.040583460732, 671.040583460732, 618.754338945564 ), .Dim = c(2L, 2L) )), Cxyk = list(structure( c(-18.5170828875512, -16.5748393456787), .Dim = 2:1 )), Cyyk = list(structure(2.4786991560888, .Dim = c( 1L, 1L ))), Cytytk = list(structure( c( 10, 0.787438922114998, 0.787438922114998, 2.4786991560888 ), .Dim = c(2L, 2L) )), Cxtytk = list(structure( c( -57.5402230447872, -54.6677145995824, -18.5170828875512, -16.5748393456787 ), .Dim = c( 2L, 2L ) )), CxL1k = list(structure( c(-59.5168204264758, -54.6093504204781), .Dim = 2:1 )), Cxmyk = list(structure( c( -21.0952527723962, -14.6807011202188 ), .Dim = 2:1 )), sumCxmyk = structure(c( -21.0952527723962, -14.6807011202188 ), .Dim = 2:1), sumCyyk = structure(3.6657193496833, .Dim = c( 1L, 1L )) ) #' EvaluateProposalLambda(hparam, thetaYList, CxyList, constraint, thetaYList@lambda, m, qVec, p)
set.seed(100) n <- 10 p <- 2 q <- 1 K <- 2 m <- 1 muBar <- c(0, 0) qVec <- c(1, 1) constraint <- c(0, 0, 0) X <- t( fabMix::simData( sameLambda = TRUE, sameSigma = TRUE, K.true = K, n = n, q = q, p = p, sINV_values = 1 / ((1:p)) )$data ) hparam <- new( "Hparam", alpha1 = 0.567755037123148, alpha2 = 1.1870201935945, delta = 2, ggamma = 2, bbeta = 3.39466184520673 ) ZOneDim <- sample(seq_len(m), n, replace = TRUE) thetaYList <- new( "ThetaYList", tao = 0.366618687752634, psy = list(structure( c( 4.18375613018654, 0, 0, 5.46215996830771 ), .Dim = c(2L, 2L) )), M = list(structure( c( 3.27412045866392, -2.40544145363349 ), .Dim = 1:2 )), lambda = list(structure( c( 2.51015961514781, -0.0741189919182549 ), .Dim = 2:1 )), Y = list(structure( c( -0.244239011725104, -0.26876172736886, 0.193431511203083, 0.41624466812811, -0.54581548068437, -0.0479517628308146, -0.633383997203325, 0.856855296613208, 0.792850576988512, 0.268208848994559 ), .Dim = c(1L, 10L) )) ) CxyList <- list( A = list(structure( c(0.567755037123148, 0, 0, 1.1870201935945), .Dim = c(2L, 2L) )), nVec = structure(10, .Dim = c(1L, 1L)), Cxxk = list(structure( c( 739.129405647622, 671.040583460732, 671.040583460732, 618.754338945564 ), .Dim = c(2L, 2L) )), Cxyk = list(structure( c(-18.5170828875512, -16.5748393456787), .Dim = 2:1 )), Cyyk = list(structure(2.4786991560888, .Dim = c( 1L, 1L ))), Cytytk = list(structure( c( 10, 0.787438922114998, 0.787438922114998, 2.4786991560888 ), .Dim = c(2L, 2L) )), Cxtytk = list(structure( c( -57.5402230447872, -54.6677145995824, -18.5170828875512, -16.5748393456787 ), .Dim = c( 2L, 2L ) )), CxL1k = list(structure( c(-59.5168204264758, -54.6093504204781), .Dim = 2:1 )), Cxmyk = list(structure( c( -21.0952527723962, -14.6807011202188 ), .Dim = 2:1 )), sumCxmyk = structure(c( -21.0952527723962, -14.6807011202188 ), .Dim = 2:1), sumCyyk = structure(3.6657193496833, .Dim = c( 1L, 1L )) ) #' EvaluateProposalLambda(hparam, thetaYList, CxyList, constraint, thetaYList@lambda, m, qVec, p)
EvaluateProposalPsy
EvaluateProposalPsy(hparam, thetaYList, CxyList, constraint, newpsy, m, p, qVec, delta)
EvaluateProposalPsy(hparam, thetaYList, CxyList, constraint, newpsy, m, p, qVec, delta)
hparam |
hparam |
thetaYList |
thetaYList |
CxyList |
CxyList |
constraint |
constraint |
newpsy |
newpsy |
m |
the number of clusters |
p |
the number of features |
qVec |
the vector of the number of factors in each clusters |
delta |
hyperparameters |
set.seed(100) n <- 10 p <- 2 q <- 1 K <- 2 m <- 1 muBar <- c(0, 0) qVec <- c(1, 1) constraint <- c(0, 0, 0) X <- t( fabMix::simData( sameLambda = TRUE, sameSigma = TRUE, K.true = K, n = n, q = q, p = p, sINV_values = 1 / ((1:p)) )$data ) hparam <- new( "Hparam", alpha1 = 0.567755037123148, alpha2 = 1.1870201935945, delta = 2, ggamma = 2, bbeta = 3.39466184520673 ) ZOneDim <- sample(seq_len(m), n, replace = TRUE) thetaYList <- new( "ThetaYList", tao = 0.366618687752634, psy = list(structure( c( 4.18375613018654, 0, 0, 5.46215996830771 ), .Dim = c(2L, 2L) )), M = list(structure( c( 3.27412045866392, -2.40544145363349 ), .Dim = 1:2 )), lambda = list(structure( c( 2.51015961514781, -0.0741189919182549 ), .Dim = 2:1 )), Y = list(structure( c( -0.244239011725104, -0.26876172736886, 0.193431511203083, 0.41624466812811, -0.54581548068437, -0.0479517628308146, -0.633383997203325, 0.856855296613208, 0.792850576988512, 0.268208848994559 ), .Dim = c(1L, 10L) )) ) constraint <- c(0, 0, 0) CxyList <- list( A = list(structure( c(0.567755037123148, 0, 0, 1.1870201935945), .Dim = c(2L, 2L) )), nVec = structure(10, .Dim = c(1L, 1L)), Cxxk = list(structure( c( 739.129405647622, 671.040583460732, 671.040583460732, 618.754338945564 ), .Dim = c(2L, 2L) )), Cxyk = list(structure( c(-18.5170828875512, -16.5748393456787), .Dim = 2:1 )), Cyyk = list(structure(2.4786991560888, .Dim = c( 1L, 1L ))), Cytytk = list(structure( c( 10, 0.787438922114998, 0.787438922114998, 2.4786991560888 ), .Dim = c(2L, 2L) )), Cxtytk = list(structure( c( -57.5402230447872, -54.6677145995824, -18.5170828875512, -16.5748393456787 ), .Dim = c( 2L, 2L ) )), CxL1k = list(structure( c(-59.5168204264758, -54.6093504204781), .Dim = 2:1 )), Cxmyk = list(structure( c( -21.0952527723962, -14.6807011202188 ), .Dim = 2:1 )), sumCxmyk = structure(c( -21.0952527723962, -14.6807011202188 ), .Dim = 2:1), sumCyyk = structure(3.6657193496833, .Dim = c( 1L, 1L )) ) EvaluateProposalPsy(hparam, thetaYList, CxyList, constraint, thetaYList@psy, m, p, qVec, delta)
set.seed(100) n <- 10 p <- 2 q <- 1 K <- 2 m <- 1 muBar <- c(0, 0) qVec <- c(1, 1) constraint <- c(0, 0, 0) X <- t( fabMix::simData( sameLambda = TRUE, sameSigma = TRUE, K.true = K, n = n, q = q, p = p, sINV_values = 1 / ((1:p)) )$data ) hparam <- new( "Hparam", alpha1 = 0.567755037123148, alpha2 = 1.1870201935945, delta = 2, ggamma = 2, bbeta = 3.39466184520673 ) ZOneDim <- sample(seq_len(m), n, replace = TRUE) thetaYList <- new( "ThetaYList", tao = 0.366618687752634, psy = list(structure( c( 4.18375613018654, 0, 0, 5.46215996830771 ), .Dim = c(2L, 2L) )), M = list(structure( c( 3.27412045866392, -2.40544145363349 ), .Dim = 1:2 )), lambda = list(structure( c( 2.51015961514781, -0.0741189919182549 ), .Dim = 2:1 )), Y = list(structure( c( -0.244239011725104, -0.26876172736886, 0.193431511203083, 0.41624466812811, -0.54581548068437, -0.0479517628308146, -0.633383997203325, 0.856855296613208, 0.792850576988512, 0.268208848994559 ), .Dim = c(1L, 10L) )) ) constraint <- c(0, 0, 0) CxyList <- list( A = list(structure( c(0.567755037123148, 0, 0, 1.1870201935945), .Dim = c(2L, 2L) )), nVec = structure(10, .Dim = c(1L, 1L)), Cxxk = list(structure( c( 739.129405647622, 671.040583460732, 671.040583460732, 618.754338945564 ), .Dim = c(2L, 2L) )), Cxyk = list(structure( c(-18.5170828875512, -16.5748393456787), .Dim = 2:1 )), Cyyk = list(structure(2.4786991560888, .Dim = c( 1L, 1L ))), Cytytk = list(structure( c( 10, 0.787438922114998, 0.787438922114998, 2.4786991560888 ), .Dim = c(2L, 2L) )), Cxtytk = list(structure( c( -57.5402230447872, -54.6677145995824, -18.5170828875512, -16.5748393456787 ), .Dim = c( 2L, 2L ) )), CxL1k = list(structure( c(-59.5168204264758, -54.6093504204781), .Dim = 2:1 )), Cxmyk = list(structure( c( -21.0952527723962, -14.6807011202188 ), .Dim = 2:1 )), sumCxmyk = structure(c( -21.0952527723962, -14.6807011202188 ), .Dim = 2:1), sumCyyk = structure(3.6657193496833, .Dim = c( 1L, 1L )) ) EvaluateProposalPsy(hparam, thetaYList, CxyList, constraint, thetaYList@psy, m, p, qVec, delta)
evaluate prior value for parameter Lambda
generatePriorLambda(p, m, alpha2, qVec, psy, constraint)
generatePriorLambda(p, m, alpha2, qVec, psy, constraint)
p |
the number of features |
m |
the number of clusters |
alpha2 |
hyper parameter |
qVec |
parameter |
psy |
parameter |
constraint |
parameter |
p <- 10 m <- 20 alpha2 <- 1.18 qVec <- rep(4, m) delta <- 2 bbeta <- 2 constraint <- c(0, 0, 0) psy <- generatePriorPsi( p, m, delta, bbeta, constraint ) #' generatePriorLambda( p, m, alpha2, qVec, psy, constraint )
p <- 10 m <- 20 alpha2 <- 1.18 qVec <- rep(4, m) delta <- 2 bbeta <- 2 constraint <- c(0, 0, 0) psy <- generatePriorPsi( p, m, delta, bbeta, constraint ) #' generatePriorLambda( p, m, alpha2, qVec, psy, constraint )
generate prior value for parameter Psi
generatePriorPsi(p, m, delta, bbeta, constraint)
generatePriorPsi(p, m, delta, bbeta, constraint)
p |
the number of features |
m |
the number of clusters |
delta |
hyperparameters |
bbeta |
hyperparameters |
constraint |
the pgmm constraint, a vector of length three with binary entry. For example, c(1,1,1) means the fully constraint model |
p <- 10 m <- 20 delta <- 2 bbeta <- 2 constraint <- c(0, 0, 0) generatePriorPsi( p, m, delta, bbeta, constraint )
p <- 10 m <- 20 delta <- 2 bbeta <- 2 constraint <- c(0, 0, 0) generatePriorPsi( p, m, delta, bbeta, constraint )
generate prior value for parameter Theta and Y.
generatePriorThetaY(m, n, p, muBar, hparam, qVec, ZOneDim, constraint)
generatePriorThetaY(m, n, p, muBar, hparam, qVec, ZOneDim, constraint)
m |
the number of cluster |
n |
sample size |
p |
number of covariates |
muBar |
parameter |
hparam |
hyperparameters |
qVec |
the vector of the number of factors in each clusters |
ZOneDim |
ZOneDim |
constraint |
constraint |
m <- 20 n <- 500 p <- 10 muBar <- c( -33.1342706763595, -35.2699639183419, 48.276928009445, 16.2370659601218, 19.0023163870536, -23.4900965314972, 37.1081269873873, 4.74944562930846, 4.6918997353449, -4.55088073255655 ) hparam <- new("Hparam", alpha1 = 0.567755037123148, alpha2 = 1.1870201935945, delta = 2, ggamma = 2, bbeta = 3.39466184520673 ) qVec <- c(4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4) ZOneDim <- sample(seq_len(m), n, replace = TRUE) constraint <- c(0, 0, 0) #' generatePriorThetaY(m, n, p, muBar, hparam, qVec, ZOneDim, constraint)
m <- 20 n <- 500 p <- 10 muBar <- c( -33.1342706763595, -35.2699639183419, 48.276928009445, 16.2370659601218, 19.0023163870536, -23.4900965314972, 37.1081269873873, 4.74944562930846, 4.6918997353449, -4.55088073255655 ) hparam <- new("Hparam", alpha1 = 0.567755037123148, alpha2 = 1.1870201935945, delta = 2, ggamma = 2, bbeta = 3.39466184520673 ) qVec <- c(4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4) ZOneDim <- sample(seq_len(m), n, replace = TRUE) constraint <- c(0, 0, 0) #' generatePriorThetaY(m, n, p, muBar, hparam, qVec, ZOneDim, constraint)
getIndThetaY
getIndThetaY(thetaYList, Ind)
getIndThetaY(thetaYList, Ind)
thetaYList |
thetaYList |
Ind |
Ind |
set.seed(100) n <- 10 p <- 2 q <- 1 K <- 2 m <- 2 muBar <- c(0, 0) qVec <- c(1, 1) constraint <- c(0, 0, 0) X <- t( fabMix::simData( sameLambda = TRUE, sameSigma = TRUE, K.true = K, n = n, q = q, p = p, sINV_values = 1 / ((1:p)) )$data ) hparam <- new( "Hparam", alpha1 = 0.567755037123148, alpha2 = 1.1870201935945, delta = 2, ggamma = 2, bbeta = 3.39466184520673 ) ZOneDim <- sample(seq_len(m), n, replace = TRUE) thetaYList <- new( "ThetaYList", tao = 0.366618687752634, psy = list(structure( c( 4.18375613018654, 0, 0, 5.46215996830771 ), .Dim = c(2L, 2L) )), M = list(structure( c( 3.27412045866392, -2.40544145363349 ), .Dim = 1:2 )), lambda = list(structure( c( 2.51015961514781, -0.0741189919182549 ), .Dim = 2:1 )), Y = list(structure( c( -0.244239011725104, -0.26876172736886, 0.193431511203083, 0.41624466812811, -0.54581548068437, -0.0479517628308146, -0.633383997203325, 0.856855296613208, 0.792850576988512, 0.268208848994559 ), .Dim = c(1L, 10L) )) ) #' getIndThetaY(thetaYList, 1)
set.seed(100) n <- 10 p <- 2 q <- 1 K <- 2 m <- 2 muBar <- c(0, 0) qVec <- c(1, 1) constraint <- c(0, 0, 0) X <- t( fabMix::simData( sameLambda = TRUE, sameSigma = TRUE, K.true = K, n = n, q = q, p = p, sINV_values = 1 / ((1:p)) )$data ) hparam <- new( "Hparam", alpha1 = 0.567755037123148, alpha2 = 1.1870201935945, delta = 2, ggamma = 2, bbeta = 3.39466184520673 ) ZOneDim <- sample(seq_len(m), n, replace = TRUE) thetaYList <- new( "ThetaYList", tao = 0.366618687752634, psy = list(structure( c( 4.18375613018654, 0, 0, 5.46215996830771 ), .Dim = c(2L, 2L) )), M = list(structure( c( 3.27412045866392, -2.40544145363349 ), .Dim = 1:2 )), lambda = list(structure( c( 2.51015961514781, -0.0741189919182549 ), .Dim = 2:1 )), Y = list(structure( c( -0.244239011725104, -0.26876172736886, 0.193431511203083, 0.41624466812811, -0.54581548068437, -0.0479517628308146, -0.633383997203325, 0.856855296613208, 0.792850576988512, 0.268208848994559 ), .Dim = c(1L, 10L) )) ) #' getIndThetaY(thetaYList, 1)
getmode
getmode(v)
getmode(v)
v |
v |
#' getmode(c(1, 1, 2, 3))
#' getmode(c(1, 1, 2, 3))
getRemovedIndThetaY
getRemovedIndThetaY(thetaYList, Ind)
getRemovedIndThetaY(thetaYList, Ind)
thetaYList |
thetaYList |
Ind |
Ind |
set.seed(100) n <- 10 p <- 2 q <- 1 K <- 2 m <- 2 muBar <- c(0, 0) qVec <- c(1, 1) constraint <- c(0, 0, 0) X <- t( fabMix::simData( sameLambda = TRUE, sameSigma = TRUE, K.true = K, n = n, q = q, p = p, sINV_values = 1 / ((1:p)) )$data ) hparam <- new( "Hparam", alpha1 = 0.567755037123148, alpha2 = 1.1870201935945, delta = 2, ggamma = 2, bbeta = 3.39466184520673 ) ZOneDim <- sample(seq_len(m), n, replace = TRUE) thetaYList <- new("ThetaYList", tao = c(0.90162050961987, 0.0983794903801295), psy = list(structure(c(3.68472841602225, 0, 0, 8.34691978354054), .Dim = c(2L, 2L)), structure(c(0.785011896130842, 0, 0, 1.19022383323437), .Dim = c(2L, 2L))), M = list(structure(c( 2.96424305287004, 1.08454861414306 ), .Dim = 1:2), structure(c( -0.232625450433964, 0.984505960868685 ), .Dim = 1:2)), lambda = list(structure(c( -0.964026624054337, 0.89378616732449 ), .Dim = 2:1), structure(c( 0.533334148228635, -1.80033696090263 ), .Dim = 2:1)), Y = list(structure(c( -0.15346475266988, 1.6584112693271, 0.409294936277862, -1.46628591247549, -0.532753243163142, -0.332143130316749, 0.307558110800446, -0.525374243612587, 0.527667526535661, 0.748193650431916 ), .Dim = c(1L, 10L)), structure(c( 0.571325118638535, 0.542462985882966, 0.559971315637159, -1.73905343105432, -0.583549598471542, 1.71264245945391, -0.327119395945831, 1.02464651767821, -1.11462280255215, 0.81095592501554 ), .Dim = c(1L, 10L)))) Ind <- 1 #' getRemovedIndThetaY(thetaYList, Ind)
set.seed(100) n <- 10 p <- 2 q <- 1 K <- 2 m <- 2 muBar <- c(0, 0) qVec <- c(1, 1) constraint <- c(0, 0, 0) X <- t( fabMix::simData( sameLambda = TRUE, sameSigma = TRUE, K.true = K, n = n, q = q, p = p, sINV_values = 1 / ((1:p)) )$data ) hparam <- new( "Hparam", alpha1 = 0.567755037123148, alpha2 = 1.1870201935945, delta = 2, ggamma = 2, bbeta = 3.39466184520673 ) ZOneDim <- sample(seq_len(m), n, replace = TRUE) thetaYList <- new("ThetaYList", tao = c(0.90162050961987, 0.0983794903801295), psy = list(structure(c(3.68472841602225, 0, 0, 8.34691978354054), .Dim = c(2L, 2L)), structure(c(0.785011896130842, 0, 0, 1.19022383323437), .Dim = c(2L, 2L))), M = list(structure(c( 2.96424305287004, 1.08454861414306 ), .Dim = 1:2), structure(c( -0.232625450433964, 0.984505960868685 ), .Dim = 1:2)), lambda = list(structure(c( -0.964026624054337, 0.89378616732449 ), .Dim = 2:1), structure(c( 0.533334148228635, -1.80033696090263 ), .Dim = 2:1)), Y = list(structure(c( -0.15346475266988, 1.6584112693271, 0.409294936277862, -1.46628591247549, -0.532753243163142, -0.332143130316749, 0.307558110800446, -0.525374243612587, 0.527667526535661, 0.748193650431916 ), .Dim = c(1L, 10L)), structure(c( 0.571325118638535, 0.542462985882966, 0.559971315637159, -1.73905343105432, -0.583549598471542, 1.71264245945391, -0.327119395945831, 1.02464651767821, -1.11462280255215, 0.81095592501554 ), .Dim = c(1L, 10L)))) Ind <- 1 #' getRemovedIndThetaY(thetaYList, Ind)
getThetaYWithEmpty
getThetaYWithEmpty(NEthetaYList, clusInd)
getThetaYWithEmpty(NEthetaYList, clusInd)
NEthetaYList |
NEthetaYList |
clusInd |
clusInd |
set.seed(100) n <- 10 p <- 2 q <- 1 K <- 2 m <- 1 muBar <- c(0, 0) qVec <- c(1, 1) constraint <- c(0, 0, 0) X <- t( fabMix::simData( sameLambda = TRUE, sameSigma = TRUE, K.true = K, n = n, q = q, p = p, sINV_values = 1 / ((1:p)) )$data ) hparam <- new( "Hparam", alpha1 = 0.567755037123148, alpha2 = 1.1870201935945, delta = 2, ggamma = 2, bbeta = 3.39466184520673 ) ZOneDim <- sample(seq_len(m), n, replace = TRUE) thetaYList <- new( "ThetaYList", tao = 0.366618687752634, psy = list(structure( c( 4.18375613018654, 0, 0, 5.46215996830771 ), .Dim = c(2L, 2L) )), M = list(structure( c( 3.27412045866392, -2.40544145363349 ), .Dim = 1:2 )), lambda = list(structure( c( 2.51015961514781, -0.0741189919182549 ), .Dim = 2:1 )), Y = list(structure( c( -0.244239011725104, -0.26876172736886, 0.193431511203083, 0.41624466812811, -0.54581548068437, -0.0479517628308146, -0.633383997203325, 0.856855296613208, 0.792850576988512, 0.268208848994559 ), .Dim = c(1L, 10L) )) ) clusInd <- rep(1, m) getThetaYWithEmpty(thetaYList, clusInd)
set.seed(100) n <- 10 p <- 2 q <- 1 K <- 2 m <- 1 muBar <- c(0, 0) qVec <- c(1, 1) constraint <- c(0, 0, 0) X <- t( fabMix::simData( sameLambda = TRUE, sameSigma = TRUE, K.true = K, n = n, q = q, p = p, sINV_values = 1 / ((1:p)) )$data ) hparam <- new( "Hparam", alpha1 = 0.567755037123148, alpha2 = 1.1870201935945, delta = 2, ggamma = 2, bbeta = 3.39466184520673 ) ZOneDim <- sample(seq_len(m), n, replace = TRUE) thetaYList <- new( "ThetaYList", tao = 0.366618687752634, psy = list(structure( c( 4.18375613018654, 0, 0, 5.46215996830771 ), .Dim = c(2L, 2L) )), M = list(structure( c( 3.27412045866392, -2.40544145363349 ), .Dim = 1:2 )), lambda = list(structure( c( 2.51015961514781, -0.0741189919182549 ), .Dim = 2:1 )), Y = list(structure( c( -0.244239011725104, -0.26876172736886, 0.193431511203083, 0.41624466812811, -0.54581548068437, -0.0479517628308146, -0.633383997203325, 0.856855296613208, 0.792850576988512, 0.268208848994559 ), .Dim = c(1L, 10L) )) ) clusInd <- rep(1, m) getThetaYWithEmpty(thetaYList, clusInd)
Tool for vector to matrix
getZmat(ZOneDim, m, n)
getZmat(ZOneDim, m, n)
ZOneDim |
a vector. |
m |
the number of cluster. |
n |
sample size. |
adjacency matrix
m <- 20 n <- 500 ZOneDim <- sample(seq_len(m), n, replace = TRUE) #' getZmat(ZOneDim, m, n)
m <- 20 n <- 500 ZOneDim <- sample(seq_len(m), n, replace = TRUE) #' getZmat(ZOneDim, m, n)
An S4 class to represent a Hyper parameter.
alpha1
A numeric value
alpha2
A numeric value
delta
A numeric value
ggamma
A numeric value
bbeta
A numeric value
new("Hparam", alpha1 = 1, alpha2 = 2, bbeta = 3, delta = 4, ggamma = 5)
new("Hparam", alpha1 = 1, alpha2 = 2, bbeta = 3, delta = 4, ggamma = 5)
likelihood
likelihood(thetaYList, ZOneDim, qqVec, muBar, X)
likelihood(thetaYList, ZOneDim, qqVec, muBar, X)
thetaYList |
thetaYList |
ZOneDim |
ZOneDim |
qqVec |
qqVec |
muBar |
muBar |
X |
X |
set.seed(100) n <- 10 p <- 2 q <- 1 K <- 2 m <- 1 muBar <- c(0, 0) qVec <- c(1, 1) constraint <- c(0, 0, 0) X <- t( fabMix::simData( sameLambda = TRUE, sameSigma = TRUE, K.true = K, n = n, q = q, p = p, sINV_values = 1 / ((1:p)) )$data ) hparam <- new( "Hparam", alpha1 = 0.567755037123148, alpha2 = 1.1870201935945, delta = 2, ggamma = 2, bbeta = 3.39466184520673 ) ZOneDim <- sample(seq_len(m), n, replace = TRUE) thetaYList <- new( "ThetaYList", tao = 0.366618687752634, psy = list(structure( c( 4.18375613018654, 0, 0, 5.46215996830771 ), .Dim = c(2L, 2L) )), M = list(structure( c( 3.27412045866392, -2.40544145363349 ), .Dim = 1:2 )), lambda = list(structure( c( 2.51015961514781, -0.0741189919182549 ), .Dim = 2:1 )), Y = list(structure( c( -0.244239011725104, -0.26876172736886, 0.193431511203083, 0.41624466812811, -0.54581548068437, -0.0479517628308146, -0.633383997203325, 0.856855296613208, 0.792850576988512, 0.268208848994559 ), .Dim = c(1L, 10L) )) ) #' likelihood(thetaYList, ZOneDim, qVec, muBar, X)
set.seed(100) n <- 10 p <- 2 q <- 1 K <- 2 m <- 1 muBar <- c(0, 0) qVec <- c(1, 1) constraint <- c(0, 0, 0) X <- t( fabMix::simData( sameLambda = TRUE, sameSigma = TRUE, K.true = K, n = n, q = q, p = p, sINV_values = 1 / ((1:p)) )$data ) hparam <- new( "Hparam", alpha1 = 0.567755037123148, alpha2 = 1.1870201935945, delta = 2, ggamma = 2, bbeta = 3.39466184520673 ) ZOneDim <- sample(seq_len(m), n, replace = TRUE) thetaYList <- new( "ThetaYList", tao = 0.366618687752634, psy = list(structure( c( 4.18375613018654, 0, 0, 5.46215996830771 ), .Dim = c(2L, 2L) )), M = list(structure( c( 3.27412045866392, -2.40544145363349 ), .Dim = 1:2 )), lambda = list(structure( c( 2.51015961514781, -0.0741189919182549 ), .Dim = 2:1 )), Y = list(structure( c( -0.244239011725104, -0.26876172736886, 0.193431511203083, 0.41624466812811, -0.54581548068437, -0.0479517628308146, -0.633383997203325, 0.856855296613208, 0.792850576988512, 0.268208848994559 ), .Dim = c(1L, 10L) )) ) #' likelihood(thetaYList, ZOneDim, qVec, muBar, X)
Convert list of string to vector of string
listToStrVec(stringList)
listToStrVec(stringList)
stringList |
list of string |
vector of string
stringList <- list("abc") #' listToStrVec(stringList)
stringList <- list("abc") #' listToStrVec(stringList)
MstepRJMCMCupdate
MstepRJMCMCupdate(X, muBar, p, thetaYList, ZOneDim, hparam, hparamInit, qVec, qnew, dVec, sVec, constraint, clusInd, mVec, Mind)
MstepRJMCMCupdate(X, muBar, p, thetaYList, ZOneDim, hparam, hparamInit, qVec, qnew, dVec, sVec, constraint, clusInd, mVec, Mind)
X |
X in MstepRJMCMCupdate |
muBar |
muBar |
p |
p |
thetaYList |
thetaYList |
ZOneDim |
ZOneDim |
hparam |
hparam |
hparamInit |
hparamInit |
qVec |
qVec |
qnew |
qnew |
dVec |
dVec |
sVec |
sVec |
constraint |
constraint |
clusInd |
clusInd |
mVec |
mVec |
Mind |
Mind |
set.seed(100) n <- 10 p <- 2 q <- 1 K <- 2 m <- 2 muBar <- c(0, 0) qVec <- c(1, 1) constraint <- c(0, 0, 0) X <- t( fabMix::simData( sameLambda = TRUE, sameSigma = TRUE, K.true = K, n = n, q = q, p = p, sINV_values = 1 / ((1:p)) )$data ) hparam <- new( "Hparam", alpha1 = 0.567755037123148, alpha2 = 1.1870201935945, delta = 2, ggamma = 2, bbeta = 3.39466184520673 ) ZOneDim <- sample(seq_len(m), n, replace = TRUE) thetaYList <- new( "ThetaYList", tao = 0.366618687752634, psy = list(structure( c( 4.18375613018654, 0, 0, 5.46215996830771 ), .Dim = c(2L, 2L) )), M = list(structure( c( 3.27412045866392, -2.40544145363349 ), .Dim = 1:2 )), lambda = list(structure( c( 2.51015961514781, -0.0741189919182549 ), .Dim = 2:1 )), Y = list(structure( c( -0.244239011725104, -0.26876172736886, 0.193431511203083, 0.41624466812811, -0.54581548068437, -0.0479517628308146, -0.633383997203325, 0.856855296613208, 0.792850576988512, 0.268208848994559 ), .Dim = c(1L, 10L) )) ) qnew <- 1 dVec <- c(1, 1, 1) sVec <- c(1, 1, 1) constraint <- c(0, 0, 0) clusInd <- rep(1, m) Mind <- "BD" mVec <- c(1, m) MstepRJMCMCupdate( X, muBar, p, thetaYList, ZOneDim, hparam, hparamInit, qVec, qnew, dVec, sVec, constraint, clusInd, mVec, Mind )
set.seed(100) n <- 10 p <- 2 q <- 1 K <- 2 m <- 2 muBar <- c(0, 0) qVec <- c(1, 1) constraint <- c(0, 0, 0) X <- t( fabMix::simData( sameLambda = TRUE, sameSigma = TRUE, K.true = K, n = n, q = q, p = p, sINV_values = 1 / ((1:p)) )$data ) hparam <- new( "Hparam", alpha1 = 0.567755037123148, alpha2 = 1.1870201935945, delta = 2, ggamma = 2, bbeta = 3.39466184520673 ) ZOneDim <- sample(seq_len(m), n, replace = TRUE) thetaYList <- new( "ThetaYList", tao = 0.366618687752634, psy = list(structure( c( 4.18375613018654, 0, 0, 5.46215996830771 ), .Dim = c(2L, 2L) )), M = list(structure( c( 3.27412045866392, -2.40544145363349 ), .Dim = 1:2 )), lambda = list(structure( c( 2.51015961514781, -0.0741189919182549 ), .Dim = 2:1 )), Y = list(structure( c( -0.244239011725104, -0.26876172736886, 0.193431511203083, 0.41624466812811, -0.54581548068437, -0.0479517628308146, -0.633383997203325, 0.856855296613208, 0.792850576988512, 0.268208848994559 ), .Dim = c(1L, 10L) )) ) qnew <- 1 dVec <- c(1, 1, 1) sVec <- c(1, 1, 1) constraint <- c(0, 0, 0) clusInd <- rep(1, m) Mind <- "BD" mVec <- c(1, m) MstepRJMCMCupdate( X, muBar, p, thetaYList, ZOneDim, hparam, hparamInit, qVec, qnew, dVec, sVec, constraint, clusInd, mVec, Mind )
bpgmm Model-Based Clustering Using Baysian PGMM Carries out model-based clustering using parsimonious Gaussian mixture models. MCMC are used for parameter estimation. The RJMCMC is used for model selection.
pgmmRJMCMC(X, mInit, mVec, qnew, delta = 2, ggamma = 2, burn = 20, niter = 1000, constraint = C(0, 0, 0), dVec = c(1, 1, 1), sVec = c(1, 1, 1), Mstep = 0, Vstep = 0, SCind = 0)
pgmmRJMCMC(X, mInit, mVec, qnew, delta = 2, ggamma = 2, burn = 20, niter = 1000, constraint = C(0, 0, 0), dVec = c(1, 1, 1), sVec = c(1, 1, 1), Mstep = 0, Vstep = 0, SCind = 0)
X |
the observation matrix with size p * m |
mInit |
the number of initial clusters |
mVec |
the range of the number of clusters |
qnew |
the number of factor for a new cluster |
delta |
scaler hyperparameters |
ggamma |
scaler hyperparameters |
burn |
the number of burn in iterations |
niter |
the number of iterations |
constraint |
the pgmm initial constraint, a vector of length three with binary entry. For example, c(1,1,1) means the fully constraint model |
dVec |
a vector of hyperparameters with length three, shape parameters for alpha1, alpha2 and bbeta respectively |
sVec |
sVec a vector of hyperparameters with length three, rate parameters for alpha1, alpha2 and bbeta respectively |
Mstep |
the indicator of whether do model selection on the number of clusters |
Vstep |
the indicator of whether do model selection on variance structures |
SCind |
the indicator of whether use split/combine step in Mstep |
library("fabMix") library("mclust") library("pgmm") library("mvtnorm") library("mcmcse") library("MASS") library("gtools") n <- 500 p <- 10 q <- 4 K <- 10 nsim <- 10 burn <- 20 qnew <- 4 Mstep <- 1 Vstep <- 1 constraint <- c(0, 0, 0) mInit <- 20 mVec <- c(1, 20) X <- t(simData( sameLambda = TRUE, sameSigma = TRUE, K.true = K, n = n, q = q, p = p, sINV_values = 1 / ((1:p)) )$data) pgmmRJMCMC(X, mInit, mVec, qnew, niter = nsim, burn = burn, constraint = constraint, Mstep = Mstep, Vstep = Vstep )
library("fabMix") library("mclust") library("pgmm") library("mvtnorm") library("mcmcse") library("MASS") library("gtools") n <- 500 p <- 10 q <- 4 K <- 10 nsim <- 10 burn <- 20 qnew <- 4 Mstep <- 1 Vstep <- 1 constraint <- c(0, 0, 0) mInit <- 20 mVec <- c(1, 20) X <- t(simData( sameLambda = TRUE, sameSigma = TRUE, K.true = K, n = n, q = q, p = p, sINV_values = 1 / ((1:p)) )$data) pgmmRJMCMC(X, mInit, mVec, qnew, niter = nsim, burn = burn, constraint = constraint, Mstep = Mstep, Vstep = Vstep )
stayMCMCupdate
stayMCMCupdate(X, thetaYList, ZOneDim, hparam, qVec, qnew, dVec, sVec, constraint, clusInd)
stayMCMCupdate(X, thetaYList, ZOneDim, hparam, qVec, qnew, dVec, sVec, constraint, clusInd)
X |
X |
thetaYList |
thetaYList |
ZOneDim |
ZOneDim |
hparam |
hparam |
qVec |
qVec |
qnew |
qnew |
dVec |
dVec |
sVec |
sVec |
constraint |
constraint |
clusInd |
clusInd |
#' set.seed(110) n <- 10 p <- 2 q <- 1 K <- 2 m <- 2 muBar <- c(0, 0) qVec <- c(1, 1) constraint <- c(0, 0, 0) X <- t( fabMix::simData( sameLambda = TRUE, sameSigma = TRUE, K.true = K, n = n, q = q, p = p, sINV_values = 1 / ((1:p)) )$data ) hparam <- new( "Hparam", alpha1 = 0.567755037123148, alpha2 = 1.1870201935945, delta = 2, ggamma = 2, bbeta = 3.39466184520673 ) ZOneDim <- sample(seq_len(m), n, replace = TRUE) thetaYList <- new("ThetaYList", tao = c(0.90162050961987, 0.0983794903801295), psy = list(structure(c(3.68472841602225, 0, 0, 8.34691978354054), .Dim = c(2L, 2L)), structure(c(0.785011896130842, 0, 0, 1.19022383323437), .Dim = c(2L, 2L))), M = list(structure(c( 2.96424305287004, 1.08454861414306 ), .Dim = 1:2), structure(c( -0.232625450433964, 0.984505960868685 ), .Dim = 1:2)), lambda = list(structure(c( -0.964026624054337, 0.89378616732449 ), .Dim = 2:1), structure(c( 0.533334148228635, -1.80033696090263 ), .Dim = 2:1)), Y = list(structure(c( -0.15346475266988, 1.6584112693271, 0.409294936277862, -1.46628591247549, -0.532753243163142, -0.332143130316749, 0.307558110800446, -0.525374243612587, 0.527667526535661, 0.748193650431916 ), .Dim = c(1L, 10L)), structure(c( 0.571325118638535, 0.542462985882966, 0.559971315637159, -1.73905343105432, -0.583549598471542, 1.71264245945391, -0.327119395945831, 1.02464651767821, -1.11462280255215, 0.81095592501554 ), .Dim = c(1L, 10L)))) qnew <- 1 dVec <- c(1, 1, 1) sVec <- c(1, 1, 1) constraint <- c(0, 0, 0) clusInd <- rep(1, m) stayMCMCupdate( X, thetaYList, ZOneDim, hparam, qVec, qnew, dVec, sVec, constraint, clusInd )
#' set.seed(110) n <- 10 p <- 2 q <- 1 K <- 2 m <- 2 muBar <- c(0, 0) qVec <- c(1, 1) constraint <- c(0, 0, 0) X <- t( fabMix::simData( sameLambda = TRUE, sameSigma = TRUE, K.true = K, n = n, q = q, p = p, sINV_values = 1 / ((1:p)) )$data ) hparam <- new( "Hparam", alpha1 = 0.567755037123148, alpha2 = 1.1870201935945, delta = 2, ggamma = 2, bbeta = 3.39466184520673 ) ZOneDim <- sample(seq_len(m), n, replace = TRUE) thetaYList <- new("ThetaYList", tao = c(0.90162050961987, 0.0983794903801295), psy = list(structure(c(3.68472841602225, 0, 0, 8.34691978354054), .Dim = c(2L, 2L)), structure(c(0.785011896130842, 0, 0, 1.19022383323437), .Dim = c(2L, 2L))), M = list(structure(c( 2.96424305287004, 1.08454861414306 ), .Dim = 1:2), structure(c( -0.232625450433964, 0.984505960868685 ), .Dim = 1:2)), lambda = list(structure(c( -0.964026624054337, 0.89378616732449 ), .Dim = 2:1), structure(c( 0.533334148228635, -1.80033696090263 ), .Dim = 2:1)), Y = list(structure(c( -0.15346475266988, 1.6584112693271, 0.409294936277862, -1.46628591247549, -0.532753243163142, -0.332143130316749, 0.307558110800446, -0.525374243612587, 0.527667526535661, 0.748193650431916 ), .Dim = c(1L, 10L)), structure(c( 0.571325118638535, 0.542462985882966, 0.559971315637159, -1.73905343105432, -0.583549598471542, 1.71264245945391, -0.327119395945831, 1.02464651767821, -1.11462280255215, 0.81095592501554 ), .Dim = c(1L, 10L)))) qnew <- 1 dVec <- c(1, 1, 1) sVec <- c(1, 1, 1) constraint <- c(0, 0, 0) clusInd <- rep(1, m) stayMCMCupdate( X, thetaYList, ZOneDim, hparam, qVec, qnew, dVec, sVec, constraint, clusInd )
sumerizeZ
sumerizeZ(Zlist, index = 1:length(Zlist))
sumerizeZ(Zlist, index = 1:length(Zlist))
Zlist |
Zlist |
index |
index |
Zlist <- list(c(1, 2, 3), c(3, 2, 1), c(2, 2, 2)) #' sumerizeZ(Zlist)
Zlist <- list(c(1, 2, 3), c(3, 2, 1), c(2, 2, 2)) #' sumerizeZ(Zlist)
summerizePgmmRJMCMC
summerizePgmmRJMCMC(pgmmResList, trueCluster = NULL)
summerizePgmmRJMCMC(pgmmResList, trueCluster = NULL)
pgmmResList |
result list from pgmmRJMCMC |
trueCluster |
true cluster allocation |
library("fabMix") library("mclust") library("pgmm") library("mvtnorm") library("mcmcse") library("MASS") library("gtools") n <- 50 p <- 10 q <- 4 K <- 10 syntheticDataset <- simData( sameLambda = TRUE, sameSigma = TRUE, K.true = K, n = n, q = q, p = p, sINV_values = 1 / ((1:p)) ) nsim <- 5 burn <- 0 X <- t(syntheticDataset$data) qnew <- 4 Mstep <- 1 Vstep <- 1 constraint <- c(0, 0, 0) mInit <- 20 mVec <- c(1, 20) res <- pgmmRJMCMC(X, mInit, mVec, qnew, niter = nsim, burn = burn, constraint = constraint, Mstep = Mstep, Vstep = Vstep ) summerizePgmmRJMCMC(res, syntheticDataset$class)
library("fabMix") library("mclust") library("pgmm") library("mvtnorm") library("mcmcse") library("MASS") library("gtools") n <- 50 p <- 10 q <- 4 K <- 10 syntheticDataset <- simData( sameLambda = TRUE, sameSigma = TRUE, K.true = K, n = n, q = q, p = p, sINV_values = 1 / ((1:p)) ) nsim <- 5 burn <- 0 X <- t(syntheticDataset$data) qnew <- 4 Mstep <- 1 Vstep <- 1 constraint <- c(0, 0, 0) mInit <- 20 mVec <- c(1, 20) res <- pgmmRJMCMC(X, mInit, mVec, qnew, niter = nsim, burn = burn, constraint = constraint, Mstep = Mstep, Vstep = Vstep ) summerizePgmmRJMCMC(res, syntheticDataset$class)
Definiton of ThetaYList parameter sets
tao
A numeric vector
psy
A list value
M
A list value
lambda
A list value
Y
A list value
Title
toEthetaYlist(NEthetaYList, NEZOneDim, qnew, clusInd)
toEthetaYlist(NEthetaYList, NEZOneDim, qnew, clusInd)
NEthetaYList |
NEthetaYList |
NEZOneDim |
NEZOneDim |
qnew |
qnew |
clusInd |
clusInd |
set.seed(100) n <- 10 p <- 2 q <- 1 K <- 2 m <- 1 muBar <- c(0, 0) qVec <- c(1, 1) constraint <- c(0, 0, 0) X <- t( fabMix::simData( sameLambda = TRUE, sameSigma = TRUE, K.true = K, n = n, q = q, p = p, sINV_values = 1 / ((1:p)) )$data ) hparam <- new( "Hparam", alpha1 = 0.567755037123148, alpha2 = 1.1870201935945, delta = 2, ggamma = 2, bbeta = 3.39466184520673 ) ZOneDim <- sample(seq_len(m), n, replace = TRUE) thetaYList <- new( "ThetaYList", tao = 0.366618687752634, psy = list(structure( c( 4.18375613018654, 0, 0, 5.46215996830771 ), .Dim = c(2L, 2L) )), M = list(structure( c( 3.27412045866392, -2.40544145363349 ), .Dim = 1:2 )), lambda = list(structure( c( 2.51015961514781, -0.0741189919182549 ), .Dim = 2:1 )), Y = list(structure( c( -0.244239011725104, -0.26876172736886, 0.193431511203083, 0.41624466812811, -0.54581548068437, -0.0479517628308146, -0.633383997203325, 0.856855296613208, 0.792850576988512, 0.268208848994559 ), .Dim = c(1L, 10L) )) ) clusInd <- rep(1, m) qnew <- 1 toEthetaYlist(thetaYList, ZOneDim, qnew, clusInd)
set.seed(100) n <- 10 p <- 2 q <- 1 K <- 2 m <- 1 muBar <- c(0, 0) qVec <- c(1, 1) constraint <- c(0, 0, 0) X <- t( fabMix::simData( sameLambda = TRUE, sameSigma = TRUE, K.true = K, n = n, q = q, p = p, sINV_values = 1 / ((1:p)) )$data ) hparam <- new( "Hparam", alpha1 = 0.567755037123148, alpha2 = 1.1870201935945, delta = 2, ggamma = 2, bbeta = 3.39466184520673 ) ZOneDim <- sample(seq_len(m), n, replace = TRUE) thetaYList <- new( "ThetaYList", tao = 0.366618687752634, psy = list(structure( c( 4.18375613018654, 0, 0, 5.46215996830771 ), .Dim = c(2L, 2L) )), M = list(structure( c( 3.27412045866392, -2.40544145363349 ), .Dim = 1:2 )), lambda = list(structure( c( 2.51015961514781, -0.0741189919182549 ), .Dim = 2:1 )), Y = list(structure( c( -0.244239011725104, -0.26876172736886, 0.193431511203083, 0.41624466812811, -0.54581548068437, -0.0479517628308146, -0.633383997203325, 0.856855296613208, 0.792850576988512, 0.268208848994559 ), .Dim = c(1L, 10L) )) ) clusInd <- rep(1, m) qnew <- 1 toEthetaYlist(thetaYList, ZOneDim, qnew, clusInd)
toNEthetaYlist
toNEthetaYlist(thetaYList, ZOneDim, qVec, clusInd)
toNEthetaYlist(thetaYList, ZOneDim, qVec, clusInd)
thetaYList |
thetaYList |
ZOneDim |
ZOneDim |
qVec |
qVec |
clusInd |
clusInd |
set.seed(100) n <- 10 p <- 2 q <- 1 K <- 2 m <- 1 muBar <- c(0, 0) qVec <- c(1, 1) constraint <- c(0, 0, 0) X <- t( fabMix::simData( sameLambda = TRUE, sameSigma = TRUE, K.true = K, n = n, q = q, p = p, sINV_values = 1 / ((1:p)) )$data ) hparam <- new( "Hparam", alpha1 = 0.567755037123148, alpha2 = 1.1870201935945, delta = 2, ggamma = 2, bbeta = 3.39466184520673 ) ZOneDim <- sample(seq_len(m), n, replace = TRUE) thetaYList <- new( "ThetaYList", tao = 0.366618687752634, psy = list(structure( c( 4.18375613018654, 0, 0, 5.46215996830771 ), .Dim = c(2L, 2L) )), M = list(structure( c( 3.27412045866392, -2.40544145363349 ), .Dim = 1:2 )), lambda = list(structure( c( 2.51015961514781, -0.0741189919182549 ), .Dim = 2:1 )), Y = list(structure( c( -0.244239011725104, -0.26876172736886, 0.193431511203083, 0.41624466812811, -0.54581548068437, -0.0479517628308146, -0.633383997203325, 0.856855296613208, 0.792850576988512, 0.268208848994559 ), .Dim = c(1L, 10L) )) ) clusInd <- rep(1, m) toNEthetaYlist(thetaYList, ZOneDim, qVec, clusInd)
set.seed(100) n <- 10 p <- 2 q <- 1 K <- 2 m <- 1 muBar <- c(0, 0) qVec <- c(1, 1) constraint <- c(0, 0, 0) X <- t( fabMix::simData( sameLambda = TRUE, sameSigma = TRUE, K.true = K, n = n, q = q, p = p, sINV_values = 1 / ((1:p)) )$data ) hparam <- new( "Hparam", alpha1 = 0.567755037123148, alpha2 = 1.1870201935945, delta = 2, ggamma = 2, bbeta = 3.39466184520673 ) ZOneDim <- sample(seq_len(m), n, replace = TRUE) thetaYList <- new( "ThetaYList", tao = 0.366618687752634, psy = list(structure( c( 4.18375613018654, 0, 0, 5.46215996830771 ), .Dim = c(2L, 2L) )), M = list(structure( c( 3.27412045866392, -2.40544145363349 ), .Dim = 1:2 )), lambda = list(structure( c( 2.51015961514781, -0.0741189919182549 ), .Dim = 2:1 )), Y = list(structure( c( -0.244239011725104, -0.26876172736886, 0.193431511203083, 0.41624466812811, -0.54581548068437, -0.0479517628308146, -0.633383997203325, 0.856855296613208, 0.792850576988512, 0.268208848994559 ), .Dim = c(1L, 10L) )) ) clusInd <- rep(1, m) toNEthetaYlist(thetaYList, ZOneDim, qVec, clusInd)
Update posterior theta Y list
updatePostThetaY(m, n, p, hparam, thetaYList, ZOneDim, qVec, constraint, X, ggamma)
updatePostThetaY(m, n, p, hparam, thetaYList, ZOneDim, qVec, constraint, X, ggamma)
m |
the number of clusters. |
n |
the number of observations. |
p |
the number of variables |
hparam |
hyper parameters |
thetaYList |
theta Y list |
ZOneDim |
ZOneDim |
qVec |
qVec |
constraint |
constraint |
X |
X |
ggamma |
ggamma |
set.seed(100) n <- 10 p <- 2 q <- 1 K <- 2 m <- 1 muBar <- c(0, 0) qVec <- c(1, 1) constraint <- c(0, 0, 0) X <- t( fabMix::simData( sameLambda = TRUE, sameSigma = TRUE, K.true = K, n = n, q = q, p = p, sINV_values = 1 / ((1:p)) )$data ) hparam <- new( "Hparam", alpha1 = 0.567755037123148, alpha2 = 1.1870201935945, delta = 2, ggamma = 2, bbeta = 3.39466184520673 ) ZOneDim <- sample(seq_len(m), n, replace = TRUE) thetaYList <- new( "ThetaYList", tao = 0.366618687752634, psy = list(structure( c( 4.18375613018654, 0, 0, 5.46215996830771 ), .Dim = c(2L, 2L) )), M = list(structure( c( 3.27412045866392, -2.40544145363349 ), .Dim = 1:2 )), lambda = list(structure( c( 2.51015961514781, -0.0741189919182549 ), .Dim = 2:1 )), Y = list(structure( c( -0.244239011725104, -0.26876172736886, 0.193431511203083, 0.41624466812811, -0.54581548068437, -0.0479517628308146, -0.633383997203325, 0.856855296613208, 0.792850576988512, 0.268208848994559 ), .Dim = c(1L, 10L) )) ) constraint <- c(0, 0, 0) #' updatePostThetaY(m, n, p, hparam, thetaYList, ZOneDim, qVec, constraint, X, ggamma)
set.seed(100) n <- 10 p <- 2 q <- 1 K <- 2 m <- 1 muBar <- c(0, 0) qVec <- c(1, 1) constraint <- c(0, 0, 0) X <- t( fabMix::simData( sameLambda = TRUE, sameSigma = TRUE, K.true = K, n = n, q = q, p = p, sINV_values = 1 / ((1:p)) )$data ) hparam <- new( "Hparam", alpha1 = 0.567755037123148, alpha2 = 1.1870201935945, delta = 2, ggamma = 2, bbeta = 3.39466184520673 ) ZOneDim <- sample(seq_len(m), n, replace = TRUE) thetaYList <- new( "ThetaYList", tao = 0.366618687752634, psy = list(structure( c( 4.18375613018654, 0, 0, 5.46215996830771 ), .Dim = c(2L, 2L) )), M = list(structure( c( 3.27412045866392, -2.40544145363349 ), .Dim = 1:2 )), lambda = list(structure( c( 2.51015961514781, -0.0741189919182549 ), .Dim = 2:1 )), Y = list(structure( c( -0.244239011725104, -0.26876172736886, 0.193431511203083, 0.41624466812811, -0.54581548068437, -0.0479517628308146, -0.633383997203325, 0.856855296613208, 0.792850576988512, 0.268208848994559 ), .Dim = c(1L, 10L) )) ) constraint <- c(0, 0, 0) #' updatePostThetaY(m, n, p, hparam, thetaYList, ZOneDim, qVec, constraint, X, ggamma)
updatePostZ
updatePostZ(X, m, n, thetaYList)
updatePostZ(X, m, n, thetaYList)
X |
X |
m |
m |
n |
n |
thetaYList |
thetaYList |
set.seed(100) n <- 10 p <- 2 q <- 1 K <- 2 m <- 1 muBar <- c(0, 0) qVec <- c(1, 1) constraint <- c(0, 0, 0) X <- t( fabMix::simData( sameLambda = TRUE, sameSigma = TRUE, K.true = K, n = n, q = q, p = p, sINV_values = 1 / ((1:p)) )$data ) hparam <- new( "Hparam", alpha1 = 0.567755037123148, alpha2 = 1.1870201935945, delta = 2, ggamma = 2, bbeta = 3.39466184520673 ) ZOneDim <- sample(seq_len(m), n, replace = TRUE) thetaYList <- new( "ThetaYList", tao = 0.366618687752634, psy = list(structure( c( 4.18375613018654, 0, 0, 5.46215996830771 ), .Dim = c(2L, 2L) )), M = list(structure( c( 3.27412045866392, -2.40544145363349 ), .Dim = 1:2 )), lambda = list(structure( c( 2.51015961514781, -0.0741189919182549 ), .Dim = 2:1 )), Y = list(structure( c( -0.244239011725104, -0.26876172736886, 0.193431511203083, 0.41624466812811, -0.54581548068437, -0.0479517628308146, -0.633383997203325, 0.856855296613208, 0.792850576988512, 0.268208848994559 ), .Dim = c(1L, 10L) )) ) updatePostZ(X, m, n, thetaYList)
set.seed(100) n <- 10 p <- 2 q <- 1 K <- 2 m <- 1 muBar <- c(0, 0) qVec <- c(1, 1) constraint <- c(0, 0, 0) X <- t( fabMix::simData( sameLambda = TRUE, sameSigma = TRUE, K.true = K, n = n, q = q, p = p, sINV_values = 1 / ((1:p)) )$data ) hparam <- new( "Hparam", alpha1 = 0.567755037123148, alpha2 = 1.1870201935945, delta = 2, ggamma = 2, bbeta = 3.39466184520673 ) ZOneDim <- sample(seq_len(m), n, replace = TRUE) thetaYList <- new( "ThetaYList", tao = 0.366618687752634, psy = list(structure( c( 4.18375613018654, 0, 0, 5.46215996830771 ), .Dim = c(2L, 2L) )), M = list(structure( c( 3.27412045866392, -2.40544145363349 ), .Dim = 1:2 )), lambda = list(structure( c( 2.51015961514781, -0.0741189919182549 ), .Dim = 2:1 )), Y = list(structure( c( -0.244239011725104, -0.26876172736886, 0.193431511203083, 0.41624466812811, -0.54581548068437, -0.0479517628308146, -0.633383997203325, 0.856855296613208, 0.792850576988512, 0.268208848994559 ), .Dim = c(1L, 10L) )) ) updatePostZ(X, m, n, thetaYList)
VstepRJMCMCupdate
VstepRJMCMCupdate(X, muBar, p, thetaYList, ZOneDim, hparam, hparamInit, qVec, qnew, ggamma, dVec, sVec, constraint, clusInd)
VstepRJMCMCupdate(X, muBar, p, thetaYList, ZOneDim, hparam, hparamInit, qVec, qnew, ggamma, dVec, sVec, constraint, clusInd)
X |
X |
muBar |
muBar |
p |
p |
thetaYList |
thetaYList |
ZOneDim |
ZOneDim |
hparam |
hparam |
hparamInit |
hparamInit |
qVec |
qVec |
qnew |
qnew |
ggamma |
ggamma |
dVec |
dVec |
sVec |
sVec |
constraint |
constraint |
clusInd |
clusInd |
set.seed(100) n <- 10 p <- 2 q <- 1 K <- 2 m <- 1 muBar <- c(0, 0) qVec <- c(1, 1) constraint <- c(0, 0, 0) X <- t( fabMix::simData( sameLambda = TRUE, sameSigma = TRUE, K.true = K, n = n, q = q, p = p, sINV_values = 1 / ((1:p)) )$data ) hparam <- new( "Hparam", alpha1 = 0.567755037123148, alpha2 = 1.1870201935945, delta = 2, ggamma = 2, bbeta = 3.39466184520673 ) ZOneDim <- sample(seq_len(m), n, replace = TRUE) thetaYList <- new( "ThetaYList", tao = 0.366618687752634, psy = list(structure( c( 4.18375613018654, 0, 0, 5.46215996830771 ), .Dim = c(2L, 2L) )), M = list(structure( c( 3.27412045866392, -2.40544145363349 ), .Dim = 1:2 )), lambda = list(structure( c( 2.51015961514781, -0.0741189919182549 ), .Dim = 2:1 )), Y = list(structure( c( -0.244239011725104, -0.26876172736886, 0.193431511203083, 0.41624466812811, -0.54581548068437, -0.0479517628308146, -0.633383997203325, 0.856855296613208, 0.792850576988512, 0.268208848994559 ), .Dim = c(1L, 10L) )) ) qnew <- 1 dVec <- c(1, 1, 1) sVec <- c(1, 1, 1) constraint <- c(0, 0, 0) clusInd <- rep(1, m) VstepRJMCMCupdate( X, muBar, p, thetaYList, ZOneDim, hparam, hparamInit, qVec, qnew, ggamma, dVec, sVec, constraint, clusInd )
set.seed(100) n <- 10 p <- 2 q <- 1 K <- 2 m <- 1 muBar <- c(0, 0) qVec <- c(1, 1) constraint <- c(0, 0, 0) X <- t( fabMix::simData( sameLambda = TRUE, sameSigma = TRUE, K.true = K, n = n, q = q, p = p, sINV_values = 1 / ((1:p)) )$data ) hparam <- new( "Hparam", alpha1 = 0.567755037123148, alpha2 = 1.1870201935945, delta = 2, ggamma = 2, bbeta = 3.39466184520673 ) ZOneDim <- sample(seq_len(m), n, replace = TRUE) thetaYList <- new( "ThetaYList", tao = 0.366618687752634, psy = list(structure( c( 4.18375613018654, 0, 0, 5.46215996830771 ), .Dim = c(2L, 2L) )), M = list(structure( c( 3.27412045866392, -2.40544145363349 ), .Dim = 1:2 )), lambda = list(structure( c( 2.51015961514781, -0.0741189919182549 ), .Dim = 2:1 )), Y = list(structure( c( -0.244239011725104, -0.26876172736886, 0.193431511203083, 0.41624466812811, -0.54581548068437, -0.0479517628308146, -0.633383997203325, 0.856855296613208, 0.792850576988512, 0.268208848994559 ), .Dim = c(1L, 10L) )) ) qnew <- 1 dVec <- c(1, 1, 1) sVec <- c(1, 1, 1) constraint <- c(0, 0, 0) clusInd <- rep(1, m) VstepRJMCMCupdate( X, muBar, p, thetaYList, ZOneDim, hparam, hparamInit, qVec, qnew, ggamma, dVec, sVec, constraint, clusInd )